Network Quantile Autoregression

Wolfgang Karl Härdle, Weining Wang Hansheng Wang, Xuening Zhu

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and **Economics** Humboldt–Universität zu Berlin City University London Peking University <http://lvb.wiwi.hu-berlin.de> <http://www.case.hu-berlin.de>

Networks

- \Box High dimensional networks
- \Box Complex risk channels
- \Box Dynamic tail event driven network

Figure 1: TENET movie

[Network Quantile Autoregression](#page-60-0) –––––––––––

Challenges

- \Box Tails of conditional distribution
- **Quantile autoregression**
- \Box Herding and impulse effects

Financial Risk Meter (FRM)

Figure 2: frm.wiwi.hu-berlin.de

CRyptocurrency IndeX (CRIX)

Figure 3: crix.hu-berlin.de

Default Intensities in a network topology

Figure 4: Node size: "TO". Edge thickness: Average edge weight.

Network dynamics

- NAR method, Zhu et al.(2015)
- \Box Banking, environmental statistics
- Quantile autoregression model, Koenker & Xiao (2006)

Figure 5: Adjacency matrix of SIFI.

Challenges

- Model dynamics
- \Box Dimension reduction
- D Dynamic tail event methods

Figure 6: Power-law distribution network.

Outline

- 1. Motivation \checkmark
- 2. Network quantile autoregression model
- 3. Simulations
- 4. Applications
- 5. Discussion

CoVaR

- \Box CoVaR technique (AB)
- \Box Two linear quantile regressions

$$
X_{i,t} = \alpha_i + \gamma_i^{\top} M_{t-1} + \varepsilon_{i,t},
$$

\n
$$
X_{j,t} = \alpha_{j|i} + \beta_{j|i} X_{i,t} + \gamma_{j|i}^{\top} M_{t-1} + \varepsilon_{j,t}.
$$

 $X_{i,t}$ log return, M_{t-1} lagged macro variables.

$$
\begin{aligned}\n\Box \quad & F_{\varepsilon_{i,t}}^{-1}(\tau | M_{t-1}) = 0 \text{ and } F_{\varepsilon_{j,t}}^{-1}(\tau | M_{t-1}, X_{i,t}) = 0, \text{ then} \\
&\widehat{\text{VaR}}_{i,t}^{\tau} = \quad \widehat{\alpha}_i + \widehat{\gamma}_i^{\top} M_{t-1}, \\
&\widehat{\text{CoVaR}}_{j|i,t}^{\tau} = \quad \widehat{\alpha}_{j|i} + \widehat{\beta}_{j|i} \widehat{\text{VaR}}_{i,t}^{\tau} + \widehat{\gamma}_{j|i}^{\top} M_{t-1}.\n\end{aligned}
$$

Network Model

 \Box U_{it} ($1 \le i \le N$, $1 \le t \le T$) i.i.d. uniform rv's. Nodal covariates $Z_i \in \mathbb{R}^q$

$$
Y_{it} = \beta_0(U_{it}) + \sum_{l=1}^q Z_{il} \gamma_l(U_{it}) + \beta_1(U_{it}) n_i^{-1} \sum_{j=1}^N a_{ij} Y_{i(t-1)} + \beta_2(U_{it}) Y_{i(t-1)} \stackrel{\text{def}}{=} g_{\theta}(U_{it}), \qquad (1)
$$

 β_j and γ_l monotone functions, $\textit{n}_i = \sum_{j \neq i} \textit{a}_{ij}$, (\textit{a}_{ij}) is an adjacency matrix, where $a_{ii} = 1$ if there is an edge from *i* to *j*, otherwise $a_{ii} = 0$. Z_{ii} node-specific variable, $\mathbb{Y}_t = (\mathsf{Y}_{1t}, \cdots, \mathsf{Y}_{\mathsf{N} t})^\top \in \mathbb{R}^{\mathsf{N}}$

Quantile Regression

Under assumption $\mathcal{F}^{-1}_{\varepsilon \cup \Omega}$ $\sum_{\varepsilon_i=X_i}^{-1}(\tau)=0$

$$
Y_i = \theta^{\top} X_i + \varepsilon_i,
$$

$$
Y_i = \theta^{\top} X_i + \beta(U_i)
$$

 $U_i \sim U[0,1]$, β monotone increasing.

$$
Q_{(Y|X)}(\tau) = \theta^{\top} X_i + \beta(\tau)
$$

[More details](#page-46-0)

A minimum contrast approach

Quantile function of Y given $X = (Z_i, \mathbb{Y}_{t-1})$.

$$
Q_{Y_{it}}(\tau | Z_i, Y_{t-1}) = \beta_0(\tau) + \sum_{l=1}^q Z_{il} \gamma_l(\tau) + \beta_1(\tau) n_i^{-1} \sum_{j=1}^N a_{ij} Y_{j(t-1)} + \beta_2(\tau) Y_{i(t-1)},
$$

 \Box $Y_{j(t-1)}$ impact of the same node. \Box $\beta_1(\tau)$ network function. \boxdot $\beta_2(\tau)$ momentum function. $\theta(u) \stackrel{\text{def}}{=} \{\beta_0(u), \beta_1(u), \beta_2(u), \gamma_1(u), \cdots, \gamma_q(u)\}^\top$

A minimum contrast approach

Estimate $\theta(\tau)$:

$$
\widehat{\theta}(\tau) = \arg\min_{\theta} \sum_{i} \sum_{t} \rho_{\tau} \{ Y_{it} - g_{\theta}(\tau) \}, \tag{2}
$$

where

$$
\rho_{\tau}(u) = \tau u \mathbf{1}\{u \in (0, \infty)\} - (1 - \tau)u \mathbf{1}\{u \in (-\infty, 0]\}. \tag{3}
$$

The conditional pdf of Y_{it} may then be estimated:

$$
\hat{f}_{Y_{it}|\mathcal{F}_{t-1}}(F_{it}^{-1}(\tau)) = (\tau_i - \tau_{i-1})/\{\hat{Q}_{Y_{it}|\mathbb{Y}_{t-1}}(\tau_i) - \hat{Q}_{Y_{it}|\mathbb{Y}_{t-1}}(\tau_{i-1})\}.
$$
\n(4)

[Network Quantile Autoregression](#page-0-0)

Figure 7: Asymmetric Loss Functions for Quantile and Expectile, $\tau = 0.9$: a solid line, $\tau = 0.5$: a dashed line. \blacklozenge [Quantiles and Expectiles](#page-41-0) [Network Quantile Autoregression](#page-0-0)

NQAR a convenient dynamics

NQAR model [\(1\)](#page-10-0):

$$
\mathbb{Y}_t = \Gamma + G_t \mathbb{Y}_{t-1} + V_t, \tag{5}
$$

$$
\Gamma = \mathsf{E}(\mathsf{B}_{0t}) = c_0 \mathbf{1}_N \in \mathbb{R}^N, \ c_0 = b_0 + c_Z, \ b_0 = \int_0^1 \beta_0(u) du,
$$

\n
$$
c_Z = \mathsf{E}(Z_1)^\top r, \ r = \left(\int_0^1 \gamma_l(u) du, 1 \le l \le q\right)^\top \in \mathbb{R}^q.
$$

\n
$$
\mathsf{B}_{0t} = \{\beta_0(U_{it}) + \sum_l Z_{il} \gamma_l(U_{it}), 1 \le i \le N\}^\top
$$

$$
G_t = \mathbf{B}_{1t} W + \mathbf{B}_{2t} \tag{6}
$$

 $\mathsf{B}_{1t} = \mathsf{diag}\{\beta_1(U_{it}), 1\leq i\leq \mathsf{N}\}, \mathsf{B}_{2t} = \mathsf{diag}\{\beta_2(U_{it}), 1\leq i\leq \mathsf{N}\}^\top$ $W = (n_i^{-1})$ i_{ij}^{-1} a $_{ij}$) is the row-normalized adjacency matrix. $V_t = B_{0t} - \Gamma$ i.i.d. with mean 0 and covariance $\Sigma_V \in \mathbb{R}^{N \times N}$. **[Definition of](#page-42-0)** Σ_V

[Network Quantile Autoregression](#page-0-0)

Definitions

Explanatory variables: $X_{it} \stackrel{\text{def}}{=} (1, Z_{i}^{\top}, n_{i}^{-1})$ $\sum_{j=1}^{N} a_{ij} Y_{jt}, Y_{it} \right)^{\top}$. $\widehat{\Omega}_0 = (NT)^{-1} \sum_{i=1}^N \sum_{t=1}^T X_{it} X_{it}^\top,$ $\widehat{\Omega}_1 = (NT)^{-1} \sum_{i=1}^N \sum_{t=1}^T f_{it} (X_{it}^\top \theta(\tau)) X_{it} X_{it}^\top$ for $\tau \in (0, 1)$, choose an appropriate sequence of τ_l $\hat{f}_{it}({\mathsf{F}}_{it}^{-1}(\tau)) = [X_{i(t-1)}^\top \{ \hat{\theta}(\tau_I) - \hat{\theta}(\tau_{I-1}) \}]^{-1} (\tau_I - \tau_{I-1})$ at $\tau \in [\tau_{l-1},\tau_l]$

Stationarity

Theorem

Under assumption C1-C4 [Details](#page-37-0)), $\{Y_t\}$ is covariance stationary and there exists a unique solution which has the form of

$$
\mathbb{Y}_t = \sum_{l=0}^{\infty} \Pi_l \Gamma + \sum_{l=0}^{\infty} \Pi_l V_{t-l}, \tag{7}
$$

where $\Pi_l = \prod_{k=1}^l G_{t-k+1}$ see [\(6\)](#page-15-0) for $l \geq 1$ and $\Pi_0 = I_N$. $G_t = B_{1t}W + B_{2t}$, $\Gamma = E(B_{0t}) = c_0 1_N \in \mathbb{R}^N$, $V_t = B_{0t} - \Gamma$.

Asymptotic Normality

Theorem

Assume $c_\beta < 1$ and $\mathsf{E}(|V_{it}|^4) < M$, where $c_\beta = \|\beta_1\|_4 + \|\beta_2\|_4$ with $\|\beta_j\|_4 = \mathsf{E}\{\beta_j(U_{it})^4\}^{1/4}$ $(j = 1, 2)$. Then:

$$
\sqrt{T}(\overline{\mathbb{Y}}_T - \mu_Y) \stackrel{\mathcal{L}}{\longrightarrow} \mathsf{N}(0,\Sigma_Y)
$$
 (8)

as $T \to \infty$, and $\Sigma_Y = \text{Cov}(\mathbb{Y}_t)$.

Impulse Analysis

Stimulus $\Delta=(\delta_1,\ldots,\delta_N)^\top\in\mathbb{R}^N$, shocks $V_t=\mathsf{B}_{0t}-\mathsf{\Gamma}.$

Creates the *impulse effect* $IE_{t,t+l} = \prod_{k=0}^{l-1} G_{t+l-k} \Delta$.

- \Box Average IE: E(IE $_{t,t+l})=G^{\prime}\Delta=(b_1 W+b_2 I_N)^{\prime}\Delta,$
- \Box Interval IE: IIE $_{I,\tau_1\tau_2}=(c_{\beta_1,\tau_1\tau_2}W+c_{\beta_2,\tau_1\tau_2}I_N)^I\Delta,$
- \boxdot IE Intensity: $\left. \mathsf{IEI}_{I,\tau} = \left\{ \beta_1(\tau)W + \beta_2(\tau)I_N \right\}^I\Delta. \right.$

[Definition of](#page-44-0) $b_{\mathbf{1}},\ b_{\mathbf{2}},\ c_{\beta_{\mathbf{1}},\tau_{\mathbf{1}}\tau_{\mathbf{2}}}$ and $c_{\beta_{\mathbf{2}},\tau_{\mathbf{1}}\tau_{\mathbf{2}}}$

An amuse gueule of theory

Theorem

Under assumption C1-C4 [Details](#page-37-0), we can prove that

$$
\widehat{\theta}(\tau) - \theta(\tau) = (NT)^{-1} \Sigma_{\theta}(\tau)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} X_{it} \psi_{\tau}(V_{it\tau}) + r_{NT}(\tau), \tag{9}
$$

where $\Sigma_{\theta}(\tau)=\Omega_{1}^{-1}\Omega_{0}\Omega_{1}^{-1}$, [Definition of](#page-43-0) Ω_{0} , $V_{it\tau}=Y_{it}-g_{\theta,i(t-1)}(\tau)$, $\textsf{sup}_{\tau \in B} |\textsf{r}_{\textsf{NT}}(\tau)| = \mathcal{O}_\rho \big((NT)^{-1/2}\big).$ This leads to the consistency result that $\widehat{\theta}(\tau) \stackrel{P}{\to} \theta(\tau)$ as $\min\{N, T\} \to \infty$ uniformly for $\tau \in B$, where B is a compact set in $(0, 1)$.

[Network Quantile Autoregression](#page-0-0)

Antipasti Theory

Theorem Under assumption C1-C4 [Details](#page-37-1), we have

$$
\sqrt{NT} \Sigma_{\theta}^{-1/2}(\tau) \big\{\widehat{\theta}(\tau) - \theta(\tau)\big\} \stackrel{\mathcal{L}}{\longrightarrow} B_p(\tau)
$$

Lemma

Under assumption C1-C4, we can prove that, for any fixed $\tau \in B$.

$$
\sqrt{NT} \Sigma_{\theta}^{-1/2}(\tau) \{\widehat{\theta}(\tau) - \theta(\tau)\} \stackrel{\mathcal{L}}{\longrightarrow} \mathsf{N}(0, \tau(1-\tau)l_k)
$$

as min $\{N, T\} \rightarrow \infty$.

[Network Quantile Autoregression](#page-0-0)

Setup

The baseline, network, and the momentum function are set to be

$$
\begin{aligned} \n\Box \ \beta_0(u) &= u, \\ \n\Box \ \beta_1(u) &= 0.1 \Phi(u), \\ \n\Box \ \beta_2(u) &= 0.4 \{ 1 + \exp(u) \}^{-1} \exp(u). \n\end{aligned}
$$

Setup

The dimension of (i.e., Z_i) is 5. The nodal functions

$$
□ \gamma_1(u) = 0.5\Phi(u, 1, 2),
$$

\n□ \gamma_2(u) = 0.3@(u, 2, 2),
\n□ \gamma_3(u) = 0.2@(u, 2, 2),
\n□ \gamma_4(u) = 0.25@(u, 3, 2),
\n□ \gamma_5(u) = 0.2@(u, 2, 1).

Setup

 $\mathbb{G}(\cdot, a, b)$ is the Gamma distribution function ϵ [Example of Gamma distribution](#page-45-1) with shape parameter a and scale parameter b. U_{it} s (1 < i < N, 1 < t < T) i.i.d. $N(0, 1)$ and t-distribution with 5 degrees of freedom. $Z_i=(Z_{i1},\cdots,Z_{i5})^{\top}\in\mathbb{R}^5\sim N(0,\Sigma_z),$ $\Sigma_z = (\sigma_{j_1j_2})$ and $\sigma_{j_1j_2} = 0.5^{|\gamma_1 - \gamma_2|}$. $\mathbb{Y}_0 = (1 - \beta_1^{\tau} - \beta_2^{\tau})^{-1} \beta_0^{\tau} \mathbf{1}, \ \beta_j^{\tau} = \phi_j \{ F^{-1}(\tau) \}$ and $F(\cdot)$ is the cdf of U_{it} . $\tau = \{0.1, 0.2, \cdots, 0.9\}$.

Network structures

- \Box (Dyad Independence Model) Dyad defined as $D_{ii} = (a_{ii}, a_{ii})$, ${\rm P}(D_{ij}=(1,1))=20$ N^{-1} $\mathrm{P}(D_{ij}=(1,0))=\mathrm{P}(D_{ij}=(0,1))=0.5N^{-0.8}.$
- \Box (Stochastic Block Model) Randomly assign for each node a block label which is indexed from 1 to K . Then set $P(a_{ij}=1)=0.3N^{-0.3}$ if i and j are in the same block, and $P(a_{ij} = 1) = 0.3N^{-1}.$
- \Box (Power-law Distribution Network) $d_i = \sum_j a_{ji}$ discrete power-law distribution $P(d_i = k) = ck^{-\alpha}$, c normalizing constant and α is set $\alpha = 2.5$

Visualization of Simulated Networks

Figure 8: The left panel: dyad independence network; The middle panel: stochastic block model; the right panel: power-law distribution network.

[Network Quantile Autoregression](#page-0-0)

Estimation of Coefficients

Figure 9: The estimated β_0 to β_2 against τ . Dyad independence network.

Table 1: Simulation Results for dyad independence network with 500 Replications. The RMSE $(\times 10^2)$ and the Coverage Probability (%) are reported for β_0 to β_1 . The RMSE is also reported for γ . Lastly, the network density $\{N(N-1)\}^{-1}\sum_{i_1,i_2} a_{i_1i_2}$ is computed and given.

Dataset

- $N = 2442$ stocks from the Chinese A share market.
- \boxdot Traded in Shanghai Stock Exchange and Shenzhen Stock Exchange in 2013.
- \Box Y_{it} weekly absolute return volatility.

Firm specific variables

- \Box SIZE (measured by the logarithm of market value),
- \Box BM (book to market ratio),
- \Box PR (increased profit ratio compared to the last year),
- \Box AR (increased asset ratio compared to the last year),
- \Box LEV (leverage ratio),
- \Box Cash (cash flow of the firm).

Descriptive statistics of financial network

Figure 10: The left panel: the average stock volatility of Chinese A stock market in 2013; the right panel: the common shareholder network of top 100 market value stocks in 2013. The larger and darker points imply higher market capitalization.

The influential power

Figure 11: The left panel: the histogram of the weighted degrees; the right panel: the influential power against weighted degrees.

Impulse analysis

Figure 12: Impulse analysis for $\tau = 0.05$, 0.5, 0.95. The cross-sectional impulse effect intensity between BOC, CMB, ICBC, PAB, and SPDB are given. The impulse direction is from column to row. [Network Quantile Autoregression](#page-0-0)

Table 2: The detailed NQAR analysis results for the Stock dataset $(\tau$ =0.05, 0.5, 0.95). The yearly estimates $(\times 10^{-2})$ are reported with the standard error $(\times 10^{-2})$ given in parentheses. The p-values are also reported.

	$\tau = 0.05$		$\tau = 0.5$		$\tau = 0.95$	
	Est.	p-value	Est.	p-value	Est.	p-value
$\hat{\beta}$ o	0.05(0.00)	< 0.01	1.00(0.04)	< 0.01	2.96(0.13)	< 0.01
$\hat{\beta}_{\mathbf{1}}$	0.00(0.02)	0.99	$-0.04(0.77)$	0.95	6.09(2.16)	< 0.01
$\hat{\beta}_2$	4.16(0.14)	< 0.01	35.70 (0.47)	< 0.01	67.84(1.13)	< 0.01
SIZE	0.00(0.01)	0.98	$-1.00(0.09)$	< 0.01	$-4.10(0.28)$	< 0.01
ВM	0.00(0.01)	0.99	$-0.29(0.04)$	< 0.01	$-0.71(0.25)$	< 0.01
PR.	0.00(0.00)	1.00	$-0.30(0.12)$	0.01	0.39(0.38)	0.31
AR	$-0.02(0.03)$	0.53	$-0.66(0.11)$	< 0.01	$-0.47(0.36)$	0.20
CASH	$-0.01(0.01)$	0.03	$-0.14(0.06)$	0.01	$-0.05(0.27)$	0.86
LEV	0.00(0.01)	0.97	$-0.79(0.05)$	< 0.01	$-2.42(0.44)$	< 0.01

\Box Backtesting

\Box Incorporating shadow banking sectors

...

Network Quantile Autoregression

Wolfgang Karl Härdle, Weining Wang Hansheng Wang, Xuening Zhu

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and **Economics** Humboldt–Universität zu Berlin City University London Peking University <http://lvb.wiwi.hu-berlin.de> <http://www.case.hu-berlin.de>

Assumptions

(C1) (Moment Assumption) Assume $c_{\beta} < 1$, where c_{β} is defined in Theorem [2.](#page-18-0) Further, assume that Z_i s are independent and identically distributed random vectors, with mean 0 and covariance $\Sigma_z \in \mathbb{R}^{p \times p}$. Furthermore, its fourth order moment is finite. The same assumption is also needed for V_{it} across both $1 \leq i \leq N$ and $0 \leq t \leq T$. Moreover, we need $\{Z_i\}$ and $\{U_{it}\}\)$ to be mutually independent.

(C2) (Network Structure)

- (C2.1) (Connectivity) Let the set of all the nodes $\{1, \dots, N\}$ be the state space of a Markov chain, with the transition probability given by W . It is assumed the Markov chain is irreducible and aperiodic. In addition, define $\pi=(\pi_i)^\top\in\mathbb{R}^{\textsf{N}}$ to be the stationary distribution vector of the Markov chain (i.e., \sum $\pi_i\geq 0$, $\tau_i \, \pi = 1$, and $W^\top \pi = \pi)$. It is assumed that $\sum_{i=1}^N \pi_i^2 \to 0$ as $N \rightarrow \infty$.
- (C2.2) (Sparsity) Assume $|\lambda_1(W^*)| = \mathcal{O}(\log N)$, where W^* is defined to be a symmetric matrix as $W^* = W + W^{\top}$.

(C3) (Convergence) Assume $\widehat{\Omega}_1 \stackrel{p}{\rightarrow} \Omega_1$ as $N \rightarrow \infty$, where $\Omega_1=(\Omega_{1,ij})\in\mathbb{R}^{N\times N}$ is a positive definite matrix. In addition, assume the following limits exist. They are, respectively, $\kappa_1 = \lim_{N \to \infty} N^{-1} \text{tr}(\Sigma_Y)$, $\kappa_2 = \lim_{N \to \infty} N^{-1} \text{tr}(W \Sigma_Y)$, $\kappa_{3}=\mathsf{lim}_{\mathcal{N}\rightarrow\infty}\,\mathcal{N}^{-1}\mathrm{tr}(\mathcal{W}\mathsf{\Sigma}_{\mathcal{Y}}\mathcal{W}^{\top})$, and $\kappa_4 = \lim_{N \to \infty} N^{-1} \text{tr} \{ (I - G)^{-1} \},$ $\kappa_5 = \lim_{N\to\infty} N^{-1} \text{tr} \{W(I-G)^{-1}\}$. Here $\kappa_j\ (1\leq j\leq 5)$ are fixed constants.

- (C4) (Density) There exists positive constants $0 < c_1 < c_2 < \infty$ such that $c_1 \leq f_{it}(x) \leq c_2$ for all $1 \leq i \leq N, 1 \leq t \leq T$ with $x \in \mathbb{R}$
- (C5) (Monotonicity) It is assumed $\theta(\tau)^{\top} X_{it}$ $(1 \leq i \leq N, 1 \leq t \leq \mathcal{T})$ are monotone increasing functions with respect to τ .

[Return to Stationarity](#page-17-0) \blacksquare [Return to An amuse gueule of theory](#page-20-0) \blacksquare [Return to Antipasti Theory](#page-21-0)

Expectile as quantile

 $e_{\tau}(Y)$ is the τ -quantile of the cdf T, where

$$
T(y) = \frac{G(y) - xF(y)}{2\{G(y) - yF(y)\} + \{y - \mu y\}},
$$
(10)

$$
G(y) = \int_{-\infty}^{y} u dF(u)
$$
(11)

▶ [Back Quantiles and Expectiles](#page-14-0)

Definition of Σ_V

$$
C = \text{vec}(\Sigma_Y) = (M_1 - c_1^{-2}c_0^2)\mathbf{1}_{N^2} + c_1^{-1}c_0(I - G^*)^{-1}\text{vec}(\Sigma_{bv}) + (I - G^*)^{-1}\text{vec}(\Sigma_V)
$$

\n
$$
C_1 = (1 - b_1 - b_2)^{-1},
$$

\n
$$
C_2 = (1 - b_1 - b_2)^{-1},
$$

\n
$$
C_3 = \frac{C_1}{C_1}c_0^2(1 + b_1 + b_2)(I - G^*)^{-1}, \Sigma_{bv} = \sigma_{bv}I_N,
$$

\n
$$
C_4 = \frac{C_1}{C_1}c_0^2(1 + b_1 + b_2)(I - G^*)^{-1}, \Sigma_{bv} = \sigma_{bv}I_N,
$$

Definition of Ω_0

$$
\Omega_0 = \left(\begin{array}{cccc} 1 & 0^\top & c_b & c_b \\ 0 & \Sigma_z & \kappa_5 \overline{\gamma}^\top \Sigma_z & \kappa_4 \overline{\gamma}^\top \Sigma_z \\ c_b & \kappa_5 \Sigma_z \overline{\gamma}^\top & \kappa_3 + c_b^2 & \kappa_2 + c_b^2 \\ c_b & \kappa_4 \Sigma_z \overline{\gamma}^\top & \kappa_2 + c_b^2 & \kappa_1 + c_b^2 \end{array}\right)
$$

 $c_b = c_1^{-1}c_0$, and Ω_1 is defined in condition (C3).

 \rightarrow [Back](#page-20-0) Ω_0

(12)

Definitions

$$
\begin{aligned}\n\Box \quad b_1 &= \mathsf{E}\{\beta_1(U_{it})\} \\
\Box \quad b_2 &= \mathsf{E}\{\beta_2(U_{it})\} \\
\Box \quad c_{\beta_1,\tau_1\tau_2} &= \int_{\tau_1}^{\tau_2} \beta_1(u) \, du \\
\Box \quad c_{\beta_2,\tau_1\tau_2} &= \int_{\tau_1}^{\tau_2} \beta_2(u) \, du.\n\end{aligned}
$$

[Return to Impulse Analysis](#page-19-0)

Gamma distribution

Figure 13: pdf of Gamma distribution (Left) and cdf of Gamma distribution (Right), source: [wikipedia.org.](https://en.wikipedia.org/wiki/Gamma_distribution)

[Return to Gamma distribution](#page-24-0)

Quantile Regression

$$
Y_{t} = \theta_{0}(u_{t}) + \theta_{1}(u_{t})Y_{t-1} + ... + \theta_{p}(u_{t})Y_{t-p}
$$

\n
$$
Q_{Y_{t}}(\tau|Y_{t-1},...,Y_{t-p}) = \theta_{0}(\tau) + \theta_{1}(\tau)Y_{t-1} + ... + \theta_{p}(\tau)Y_{t-p}
$$

\n
$$
= x_{t} \top \theta(\tau)
$$

\nwith $x_{t} = (1, Y_{t-1},..., Y_{t-p})$

$$
Q_{g(u)}(\tau)=g(Q_u(\tau))=g(\tau)
$$

[Back to Quantile Regression](#page-11-0)

[Network Quantile Autoregression](#page-0-0)

Adrian, T. and Brunnermeier, M. K. C_0V a R American Economic Review. 106(7): 1705-1741. 2016

早 Berkowitz, J., Christoffersen, P. and Pelletier, D. Evaluating value-at-risk models with desk-level data Working Paper 010, North Carolina State University, Department of Economics, 2009

Bickel, P. J., Ritov, Y. and Tsybakov, A. B. Hierarchical selection of variables in sparse high-dimensional regression Borrowing Strength: Theory Powering Applications - A Festschrift for Lawrence D. Brown. IMS Collections, v. 6, 56-69. 2010 [Network Quantile Autoregression](#page-60-0)

E. Bickel, P. J., Ritov, Y. and Tsybakov, A. B. Simultaneous analysis of lasso and dantzig selector Ann. Statist. 37(4), 1705-1732. 2009

暈 Bradic, J., Fan, J. and Wang, W. Penalized composite quasi-likelihood for ultrahigh dimensional variable selection J. R. Statist. Soc. B 73(3): 325-349. 2011

Campbell, J. Y., Lo, A. W. and MacKinlay, A. C. The Econometrics of Financial Markets Princeton University Press, 1996

- 譶 Chao, S. K., Härdle, W. K. and Wang, W. Quantile regression in Risk Calibration In Handbook for Financial Econometrics and Statistics (Cheng-Few Lee, ed.). Springer Verlag, p 1467-1489, 2014.
- Engle, R. F. and Manganelli, S. CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles J. Bus. Econ. Stat. 22: 367-381, 2004
- Fan, J. and Li, R.

Variable selection via nonconcave penalized likelihood and its oracle properties

J. Amer. Statist. Assoc. 96: 1348-1360. 2001

S. Franke, J., Härdle, W. and Hafner, C. Statistics of Financial Markets Springer, 2015

歸

Härdle, W. and Stoker, T. M.

Investigating smooth multiple regression by the method of average derivatives

J. Amer. Statist. Assoc., 84: 986-995. 1989

Hao, L. and Naiman, Q. D. Quantile Regression Sage Publications, 2007

Hautsch, N., Schaumburg, J. and Schienle, M. Financial Network System Risk Contributions Review of Finance, Vol. 19, No 2, 685-738. 2015

■ Huber, P. J.

Robust estimation of a location parameter Ann. Math. Statist., 35(1): 73-101. 1964

 \blacktriangleright Hull C. I.

Risk Management and Financial Institutions – 2nd ed. Prentice Hall, 2010

J. Amer. Statist. Assoc. 103, 1656-1673. 2008

Koenker, R. and Bassett, G. W. Regression quantiles Econometrica. 46: 33-50. 1978

Koenker, R. and Bassett, G. W. Robust tests for heteroscedasticity based on regression quantiles Econometrica 50: 43-61. 1982

Koenker, R. and Hallock, K. F. Quantile regression Journal of Econometric Perspectives 15(4): 143-156. 2001

Kong, E. and Xia, Y. Variable selection for the single-index model

Biometrika. 94: 217-229. 1994

Leider J.

A Quantile Regression Study of Climate Change in Chicago available on [www.siam.org,](http://www.siam.org/students/siuro/vol5/S01174.pdf) 2012

Leng, C., Xia, Y. and Xu, J.

An adaptive estimation method for semiparametric models and dimension reduction WSPC-Proceedings. 2010

■ Li, Y, and Zhu, J. L1- norm quantile regression J. Comput. Graph. Stat., 17: 163-185. 2008 歸 Newey, W. and Powell, J. Asymmetric least squares estimation and testing

Econometrica 55: 819-847. 1987

Koenker R

Quantile Regression Cambridge Univ. Press, 2000

- Ruppert, D., Sheather, S. J. and Wand, M. P. 晶 An effective bandwidth selector for local least squares regression. J. Amer. Statist. Assoc. 90: 1257-1270. 1995
- Schnabel, S. and Eilers, P. Optimal expectile smoothing Comput. Stat. Data. An. 53(12): 4168-4177. 2009

Serfling, R. J.

Approximation theorems of mathematical statistics Wiley, New York. 1980

Tibshirani, R.

Regression shrinkage and selection via the lasso J. R. Statist. Soc. B 58(1): 267-288. 1996

Wang, Q. and Yin, X.

A nonlinear multi-dimensional variable selection methods for highdimensional data: sparse mave Comput. Stat. Data. An., 52: 4512-4520. 2008

No. 7. Z., Yu, K. and Yu, Y. Single-index quantile regression J. Multivariate Anal., 101: 1607-1621. 2010


```
Xia, Y., Tong, H., Li, W. and Zhu, L.
   An adaptive estimation of dimension reduction space
   J. R. Statist. Soc. B 64, Part 3, pp. 363-410, 2002
Yu. K. and Jones, M. C.
   Local linear quantile regression
   J. Amer. Statist. Assoc. 98: 228-237, 1998
  Yuan, M.
   GACV for Quantile Smoothing Splines
   Comput. Stat. Data. An., 5, 813-829. 2006
```


The adaptive Lasso and its oracle properties J. Amer. Statist. Assoc. 101(476): 1418-1429. 2006

