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Motivation 1-1

Networks

� High dimensional networks
� Complex risk channels
� Dynamic tail event driven network

Figure 1: TENET movie
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Motivation 1-2

Challenges

� Tails of conditional distribution
� Quantile autoregression
� Herding and impulse effects
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Motivation 1-3

Financial Risk Meter (FRM)

Figure 2: frm.wiwi.hu-berlin.de
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Motivation 1-4

CRyptocurrency IndeX (CRIX)

Figure 3: crix.hu-berlin.de
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Motivation 1-5

Default Intensities in a network topology

Figure 4: Node size: "TO". Edge thickness: Average edge weight.
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Motivation 1-6

Network dynamics

� NAR method, Zhu et al.(2015)
� Banking, environmental statistics
� Quantile autoregression model, Koenker & Xiao (2006)

Figure 5: Adjacency matrix of SIFI.

Network Quantile Autoregression



Motivation 1-7

Challenges

� Model dynamics
� Dimension reduction
� Dynamic tail event methods

Figure 6: Power-law distribution network.
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Outline

1. Motivation X

2. Network quantile autoregression model
3. Simulations
4. Applications
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Network quanitle autoregression model 2-1

CoVaR

� CoVaR technique (AB)
� Two linear quantile regressions

Xi ,t = αi + γ>i Mt−1 + εi ,t ,

Xj ,t = αj |i + βj |iXi ,t + γ>j |iMt−1 + εj ,t .

Xi ,t log return, Mt−1 lagged macro variables.

� F−1
εi,t

(τ |Mt−1) = 0 and F−1
εj,t

(τ |Mt−1,Xi ,t) = 0, then

V̂aR
τ

i ,t = α̂i + γ̂>i Mt−1,

ĈoVaR
τ

j |i ,t = α̂j |i + β̂j |i V̂aR
τ

i ,t + γ̂>j |iMt−1.
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Network quanitle autoregression model 2-2

Network Model

� Uit (1 ≤ i ≤ N, 1 ≤ t ≤ T ) i.i.d. uniform rv’s. Nodal
covariates Zi ∈ Rq

Yit = β0(Uit) +

q∑
l=1

Zilγl (Uit) + β1(Uit)n−1
i

N∑
j=1

aijYi(t−1)

+β2(Uit)Yi(t−1)
def
= gθ(Uit), (1)

βj and γl monotone functions, ni =
∑

j 6=i aij , (aij) is an
adjacency matrix, where aij = 1 if there is an edge from i to j ,
otherwise aij = 0. Zil node-specific variable,
Yt = (Y1t , · · · ,YNt)> ∈ RN
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Network quanitle autoregression model 2-3

Quantile Regression

Under assumption F−1
εi |Xi

(τ) = 0

Yi = θ>Xi + εi ,

Yi = θ>Xi + β(Ui )

Ui ∼ U[0, 1], β monotone increasing.

Q(Y |X )(τ) = θ>Xi + β(τ)

More details
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Network quanitle autoregression model 2-4

A minimum contrast approach

Quantile function of Y given X = (Zi ,Yt−1).

QYit (τ |Zi ,Yt−1) = β0(τ) +

q∑
l=1

Zilγl (τ) + β1(τ)n−1
i

N∑
j=1

aijYj(t−1)

+β2(τ)Yi(t−1),

� Yj(t−1) impact of the same node.
� β1(τ) network function.
� β2(τ) momentum function.

θ(u)
def
= {β0(u), β1(u), β2(u), γ1(u), · · · , γq(u)}>
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Network quanitle autoregression model 2-5

A minimum contrast approach

Estimate θ(τ):

θ̂(τ) = arg minθ
∑

i

∑
t

ρτ{Yit − gθ(τ)}, (2)

where

ρτ (u) = τu1{u ∈ (0,∞)} − (1− τ)u1{u ∈ (−∞, 0]}. (3)

The conditional pdf of Yit may then be estimated:

f̂Yit |Ft−1(F−1
it (τ)) = (τi − τi−1)/{Q̂Yit |Yt−1(τi )− Q̂Yit |Yt−1(τi−1)}.

(4)
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Network quanitle autoregression model 2-6

Asymmetric Loss Functions
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Figure 7: Asymmetric Loss Functions for Quantile and Expectile, τ = 0.9:
a solid line, τ = 0.5: a dashed line. Quantiles and Expectiles
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Network quanitle autoregression model 2-7

NQAR a convenient dynamics
NQAR model (1):

Yt = Γ + GtYt−1 + Vt , (5)

Γ = E(B0t) = c01N ∈ RN , c0 = b0 + cZ , b0 =
∫ 1
0 β0(u)du,

cZ = E(Z1)>r , r =
( ∫ 1

0 γl (u)du, 1 ≤ l ≤ q
)> ∈ Rq.

B0t = {β0(Uit) +
∑

l Zilγl (Uit), 1 ≤ i ≤ N}>

Gt = B1tW + B2t (6)

B1t = diag{β1(Uit), 1 ≤ i ≤ N},B2t = diag{β2(Uit), 1 ≤ i ≤ N}>

W = (n−1
i aij) is the row-normalized adjacency matrix.

Vt = B0t − Γ i.i.d. with mean 0 and covariance ΣV ∈ RN×N .
Definition of ΣV
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Theorem 3-1

Definitions

Explanatory variables: Xit
def
= (1,Z>i , n

−1
i
∑N

j=1 aijYjt ,Yit)>.

Ω̂0 = (NT )−1∑N
i=1
∑T

t=1 XitX>it ,

Ω̂1 = (NT )−1∑N
i=1
∑T

t=1 fit
(
X>it θ(τ)

)
XitX>it

for τ ∈ (0, 1), choose an appropriate sequence of τl

f̂it(F−1
it (τ)) = [X>i(t−1){θ̂(τl )− θ̂(τl−1)}]−1(τl − τl−1) at

τ ∈ [τl−1, τl ]
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Theorem 3-2

Stationarity

Theorem
Under assumption C1-C4 Details , {Yt} is covariance stationary and
there exists a unique solution which has the form of

Yt =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l , (7)

where Πl =
∏l

k=1 Gt−k+1 see (6) for l ≥ 1 and Π0 = IN .

Gt = B1tW + B2t , Γ = E(B0t) = c01N ∈ RN , Vt = B0t − Γ.
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Theorem 3-3

Asymptotic Normality

Theorem
Assume cβ < 1 and E(|Vit |4) < M, where cβ = ‖β1‖4 + ‖β2‖4 with
‖βj‖4 = E{βj(Uit)4}1/4 (j = 1, 2). Then:

√
T (YT − µY )

L−→ N(0,ΣY ) (8)

as T →∞, and ΣY = Cov(Yt).
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Theorem 3-4

Impulse Analysis

Stimulus ∆ = (δ1, . . . , δN)> ∈ RN , shocks Vt = B0t − Γ.

Creates the impulse effect IEt,t+l =
∏l−1

k=0 Gt+l−k∆.

� Average IE: E(IEt,t+l ) = G l∆ = (b1W + b2IN)l∆,

� Interval IE: IIEl ,τ1τ2 = (cβ1,τ1τ2W + cβ2,τ1τ2 IN)l∆,

� IE Intensity: IEIl ,τ =
{
β1(τ)W + β2(τ)IN

}l
∆.

Definition of b1, b2, cβ1,τ1τ2 and cβ2,τ1τ2
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Theorem 3-5

An amuse gueule of theory

Theorem
Under assumption C1-C4 Details , we can prove that

θ̂(τ)− θ(τ) = (NT )−1Σθ(τ)−1
N∑

i=1

T∑
t=1

Xitψτ (Vitτ ) + rNT (τ), (9)

where Σθ(τ) = Ω−1
1 Ω0Ω−1

1 , Definition of Ω0 Vitτ = Yit − gθ,i(t−1)(τ),
supτ∈B |rNT (τ)| = Op

(
(NT )−1/2). This leads to the consistency

result that θ̂(τ)
p→ θ(τ) as min{N,T} → ∞ uniformly for τ ∈ B,

where B is a compact set in (0, 1).
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Theorem 3-6

Antipasti Theory

Theorem
Under assumption C1-C4 Details , we have

√
NTΣ

−1/2
θ (τ)

{
θ̂(τ)− θ(τ)

} L−→ Bp(τ)

Lemma
Under assumption C1-C4, we can prove that, for any fixed τ ∈ B.

√
NTΣ

−1/2
θ (τ){θ̂(τ)− θ(τ)} L−→ N(0, τ(1− τ)Ik)

as min{N,T} → ∞.
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Simulations 4-1

Setup

The baseline, network, and the momentum function are set to be
� β0(u) = u,
� β1(u) = 0.1Φ(u),
� β2(u) = 0.4{1 + exp(u)}−1 exp(u).

Network Quantile Autoregression



Simulations 4-2

Setup

The dimension of (i.e., Zi ) is 5. The nodal functions
� γ1(u) = 0.5Φ(u, 1, 2),
� γ2(u) = 0.3G(u, 2, 2),
� γ3(u) = 0.2G(u, 2, 2),
� γ4(u) = 0.25G(u, 3, 2),
� γ5(u) = 0.2G(u, 2, 1).

NAR

Network Quantile Autoregression
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Simulations 4-3

Setup

G(·, a, b) is the Gamma distribution function Example of Gamma distribution

with shape parameter a and scale parameter b.

Uits (1 ≤ i ≤ N, 1 ≤ t ≤ T ) i.i.d. N(0, 1) and

t-distribution with 5 degrees of freedom.

Zi = (Zi1, · · · ,Zi5)> ∈ R5 ∼ N(0,Σz),

Σz = (σj1j2) and σj1j2 = 0.5|γ1−γ2|.

Y0 = (1− βτ1 − βτ2 )−1βτ01, βτj = φj{F−1(τ)}

and F (·) is the cdf of Uit . τ = {0.1, 0.2, · · · , 0.9}.
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Simulations 4-4

Network structures

� (Dyad Independence Model) Dyad defined as Dij = (aij , aji ),
P(Dij = (1, 1)) = 20N−1

P(Dij = (1, 0)) = P(Dij = (0, 1)) = 0.5N−0.8.
� (Stochastic Block Model) Randomly assign for each node a

block label which is indexed from 1 to K . Then set
P(aij = 1) = 0.3N−0.3 if i and j are in the same block, and
P(aij = 1) = 0.3N−1.

� (Power-law Distribution Network) di =
∑

j aji discrete
power-law distribution P(di = k) = ck−α, c normalizing
constant and α is set α = 2.5

Network Quantile Autoregression



Simulations 4-5

Visualization of Simulated Networks

Figure 8: The left panel: dyad independence network; The middle panel:
stochastic block model; the right panel: power-law distribution network.

NAR

Network Quantile Autoregression
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Simulations 4-6

Estimation of Coefficients
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Figure 9: The estimated β0 to β2 against τ . Dyad independence network.
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Table 1: Simulation Results for dyad independence network with 500 Repli-
cations. The RMSE (×102) and the Coverage Probability (%) are reported
for β0 to β1. The RMSE is also reported for γ. Lastly, the network density
{N(N − 1)}−1∑

i1,i2 ai1i2 is computed and given.

N Dist. β0 β1 β2 γ ND
τ = 0.1

100 Z 2.58(95.0) 6.83(94.8) 2.50(94.6) 3.09 22.7
T 3.52(95.8) 8.39(95.6) 2.42(94.8) 4.22

500 Z 1.13(96.2) 3.20(96.2) 1.08(94.8) 1.32 4.7
T 1.42(97.0) 3.69(94.8) 1.06(95.2) 1.85

1000 Z 0.76(95.6) 2.44(94.4) 0.74(95.2) 0.91 2.4
T 1.03(97.0) 2.65(95.0) 0.77(94.8) 1.29

τ = 0.9
100 Z 2.54(94.2) 6.38(95.8) 2.36(94.6) 2.93 22.7

T 3.81(94.6) 7.46(94.8) 2.37(95.0) 4.21
500 Z 1.14(95.0) 3.31(93.4) 1.05(94.6) 1.27 4.7

T 1.46(96.6) 3.30(96.2) 1.02(94.2) 1.81
1000 Z 0.81(95.6) 2.17(95.2) 0.77(93.4) 0.92 2.4

T 1.07(95.2) 2.34(96.0) 0.79(92.2) 1.22



Application 5-1

Dataset

� N = 2442 stocks from the Chinese A share market.
� Traded in Shanghai Stock Exchange and Shenzhen Stock

Exchange in 2013.
� Yit weekly absolute return volatility.

Network Quantile Autoregression



Application 5-2

Firm specific variables

� SIZE (measured by the logarithm of market value),
� BM (book to market ratio),
� PR (increased profit ratio compared to the last year),
� AR (increased asset ratio compared to the last year),
� LEV (leverage ratio),
� Cash (cash flow of the firm).

Network Quantile Autoregression



Application 5-3

Descriptive statistics of financial network

Figure 10: The left panel: the average stock volatility of Chinese A stock
market in 2013; the right panel: the common shareholder network of top
100 market value stocks in 2013. The larger and darker points imply higher
market capitalization.
Network Quantile Autoregression



Application 5-4

The influential power
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Figure 11: The left panel: the histogram of the weighted degrees; the right
panel: the influential power against weighted degrees.
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Application 5-5

Impulse analysis

step

im
pu

lse
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Figure 12: Impulse analysis for τ = 0.05, 0.5, 0.95. The cross-sectional
impulse effect intensity between BOC, CMB, ICBC, PAB, and SPDB are
given. The impulse direction is from column to row.
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Table 2: The detailed NQAR analysis results for the Stock dataset
(τ =0.05, 0.5, 0.95). The yearly estimates (×10−2) are reported with
the standard error (×10−2) given in parentheses. The p-values are also
reported.

τ = 0.05 τ = 0.5 τ = 0.95
Est. p-value Est. p-value Est. p-value

β̂0 0.05 (0.00) < 0.01 1.00 (0.04) < 0.01 2.96 (0.13) < 0.01
β̂1 0.00 (0.02) 0.99 -0.04 (0.77) 0.95 6.09 (2.16) < 0.01
β̂2 4.16 (0.14) < 0.01 35.70 (0.47) < 0.01 67.84 (1.13) < 0.01

SIZE 0.00 (0.01) 0.98 -1.00 (0.09) < 0.01 -4.10 (0.28) < 0.01
BM 0.00 (0.01) 0.99 -0.29 (0.04) < 0.01 -0.71 (0.25) < 0.01
PR 0.00 (0.00) 1.00 -0.30 (0.12) 0.01 0.39 (0.38) 0.31
AR -0.02 (0.03) 0.53 -0.66 (0.11) < 0.01 -0.47 (0.36) 0.20

CASH -0.01 (0.01) 0.03 -0.14 (0.06) 0.01 -0.05 (0.27) 0.86
LEV 0.00 (0.01) 0.97 -0.79 (0.05) < 0.01 -2.42 (0.44) < 0.01



Further Work 6-1

� Backtesting
� Incorporating shadow banking sectors
� ...
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Appendix 7-1

Assumptions

(C1) (Moment Assumption) Assume cβ < 1, where cβ is defined in
Theorem 2. Further, assume that Zi s are independent and
identically distributed random vectors, with mean 0 and
covariance Σz ∈ Rp×p. Furthermore, its fourth order moment
is finite. The same assumption is also needed for Vit across
both 1 ≤ i ≤ N and 0 ≤ t ≤ T . Moreover, we need {Zi} and
{Uit} to be mutually independent.
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Appendix 7-2

(C2) (Network Structure)
(C2.1) (Connectivity) Let the set of all the nodes {1, · · · ,N} be the

state space of a Markov chain, with the transition probability
given by W . It is assumed the Markov chain is irreducible and
aperiodic. In addition, define π = (πi )

> ∈ RN to be the
stationary distribution vector of the Markov chain (i.e., πi ≥ 0,∑

i π = 1, and W>π = π). It is assumed that
∑N

i=1 π
2
i → 0

as N →∞.
(C2.2) (Sparsity) Assume |λ1(W ∗)| = O(logN), where W ∗ is defined

to be a symmetric matrix as W ∗ = W + W>.
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Appendix 7-3

(C3) (Convergence) Assume Ω̂1
p−→ Ω1 as N →∞, where

Ω1 = (Ω1,ij) ∈ RN×N is a positive definite matrix. In addition,
assume the following limits exist. They are, respectively,
κ1 = limN→∞ N−1tr(ΣY ), κ2 = limN→∞ N−1tr(WΣY ),
κ3 = limN→∞ N−1tr(WΣYW>), and
κ4 = limN→∞ N−1tr{(I − G )−1},
κ5 = limN→∞ N−1tr{W (I − G )−1}. Here κj (1 ≤ j ≤ 5) are
fixed constants.
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Appendix 7-4

(C4) (Density) There exists positive constants 0 < c1 < c2 <∞
such that c1 ≤ fit(x) ≤ c2 for all 1 ≤ i ≤ N, 1 ≤ t ≤ T with
x ∈ R.

(C5) (Monotonicity) It is assumed θ(τ)>Xit (1 ≤ i ≤ N, 1 ≤ t ≤ T )
are monotone increasing functions with respect to τ .

Return to Stationarity Return to An amuse gueule of theory Return to Antipasti Theory
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Appendix 7-5

Expectile as quantile

eτ (Y ) is the τ -quantile of the cdf T , where

T (y) =
G (y)− xF (y)

2{G (y)− yF (y)}+ {y − µY }
, (10)

G (y) =

∫ y

−∞
u dF (u) (11)

Back Quantiles and Expectiles
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Appendix 7-6

Definition of ΣV

� vec(ΣY ) = (M1 − c−2
1 c2

0 )1N2 + c−1
1 c0(I − G ∗)−1vec(Σbv ) +

(I − G ∗)−1vec(ΣV )

� c1 = (1− b1 − b2)−1„

� M1 = c−1
1 c2

0 (1 + b1 + b2)(I − G ∗)−1, Σbv = σbv IN ,

� σbv = E[{β1(Uit) + β2(Uit)}Vit ].

Back ΣV
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Appendix 7-7

Definition of Ω0

Ω0 =


1 0> cb cb
0 Σz κ5γ

>Σz κ4γ
>Σz

cb κ5Σzγ
> κ3 + c2

b κ2 + c2
b

cb κ4Σzγ
> κ2 + c2

b κ1 + c2
b

 (12)

cb = c−1
1 c0, and Ω1 is defined in condition (C3).

Back Ω0
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Appendix 7-8

Definitions

� b1 = E{β1(Uit)}
� b2 = E{β2(Uit)}
� cβ1,τ1τ2 =

∫ τ2
τ1
β1(u)du

� cβ2,τ1τ2 =
∫ τ2
τ1
β2(u)du.

Return to Impulse Analysis
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Appendix 7-9

Gamma distribution

Figure 13: pdf of Gamma distribution (Left) and cdf of Gamma distribution
(Right), source: wikipedia.org.

Return to Gamma distribution

Network Quantile Autoregression
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Appendix 7-10

Quantile Regression

Yt = θ0(ut) + θ1(ut)Yt−1 + . . .+ θp(ut)Yt−p

QYt (τ |Yt−1, . . . ,Yt−p) = θ0(τ) + θ1(τ)Yt−1 + . . .+ θp(τ)Yt−p

= xt>θ(τ)

with xt = (1,Yt−1, . . . ,Yt−p)

Qg(u)(τ) = g(Qu(τ)) = g(τ)

Back to Quantile Regression
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